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8 Digital Control Systems

8.1 Background of Digital Control Systems

Practically all control systems are implemented on digital computers, meaning
that the controller uses sampled output of the plant and periodically computes
a sequence of commands {u[k]} , {u(tk)} (k = 0, 1, 2, . . . ), instead of directly
generating a continuous signal u(t). The next block diagram illustrates such
a control implementation schemes. The function block that converts y(t) to
y[k] = y(tk) (k = 0, 1, 2, . . . ) is called an analog-to-digital converter (ADC).
The block that converts u(tk) to u(t) is called a digital-to analog converter
(DAC).

// ADC
y(tk) // Controller

u(tk) // DAC
u(t) // Plant

y(t) //

For linear time invariant plants and controllers, the plant and controller can
be represented as transfer functions. The block diagram can then be simplified
to:

// ADC
y(tk) // −C(z)

u(tk) // DAC
u(t) // P (s)

y(t) //

where by convention of negative feedback control, we have added the negative
sign in front of the digital controller.

Computer-controlled systems are also called sampled-data systems. The mix-
ture of continuous- and discrete-time signals and systems causes multiple diffi-
culties in analysis. Often, it is sufficient to understand and control the behavior
of the system at the sampling instances. In that case, the previous block diagram
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can be re-ordered to

◦ // C(z)
u(tk) // DAC

u(t) // P (s)
y(t) // ADC

y(tk) //
− OO

If only the signals at the discrete sampling instances are of interest, the system
is called a discrete-time system.

For now, we will simply treat the ADC as a sampler. The block diagram can
then be represented as:

u(t) // P (s)
y(t) ◦

∆T

y(tk)//

The most widely used DAC in practice is called a zero order holder (ZOH). Fig.
4 illustrates the idea of the ZOH and digital sampler. Between the discrete-time
indices k and k + 1, the ZOH holds the value of u(tk); and only the output
values y(tk) (k = 0, 1, 2, . . . ) are actually measured and used in the closed-loop
system.

Figure 4 – Discrete-time sampled-data input and output
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8.2 Discretization of Continuous-time Systems

Consider the discrete-time controllor implementation scheme where u(k) and

u(k) // ZOH
u(t) // G (s)

y(t) ◦
∆T

y(k)//

Figure 5 – ZOH-based discrete-time controllor implementation scheme

y(k) have the same sampling time.
To derive the transfer function from u(k) to y(k), we let u(k) be a discrete-

time impulse (whose Z transform is 1) and obtain the Z transform of y(k). As
u(k) = 1 for k = 0 and u(k) = 0 otherwise, after the zero order hold,

u(t) =





1, 0 ≤ t < ∆T

0, otherwise

The Laplace transform of this signal is

U(s) =
1− e−s∆T

s

Hence

y(t) = L−1

[
G(s)

1− e−s∆T
s

]
= L−1

[
G(s)

1

s

]
− L−1

[
G(s)

e−s∆T

s

]

Sampling this continuous-time signal at ∆T , and performing the Z transform
gives:

G(z) = Z
{
L−1

[
G(s)

1

s

]∣∣∣∣
t=k∆T

− L−1

[
G(s)

e−s∆T

s

]∣∣∣∣
t=k∆T

}

= Z
{
L−1

[
G(s)

1

s

]∣∣∣∣
t=k∆T

}
− z−1Z

{
L−1

[
G(s)

1

s

]∣∣∣∣
t=k∆T

}

where the last equality holds because e−s∆T corresponds to exactly one step of
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discrete-time delay.

Fact 1. The transfer function from u(k) to y(k) in Fig. 5 is

G(z) = (1− z−1)Z
{
L−1

[
G(s)

1

s

]∣∣∣∣
t=k∆T

}

where ∆T is the sampling time.

Example 12. Obtain the ZOH equivalent of

G(s) =
a

s+ a

Following the discretization procedures we have

G(s)

s
=

a

s(s+ a)
=

1

s
− 1

s+ a

and hence
L−1

{
G(s)

s

}
= 1(t)− e−at1(t)

Sampling at ∆T gives 1(k∆T ) − e−ak∆T1(k∆T ), whose Z transform is (from
the table of Z transform)

z

z − 1
− z

z − e−a∆T
=

z(1− e−a∆T )

(z − 1)(z − e−a∆T )

Hence the ZOH equivalent is

(1− z−1)
z(1− e−a∆T )

(z − 1)(z − e−a∆T )
=

1− e−a∆T

z − e−a∆T

In MATLAB, the function c2d.m computes the ZOH equivalent of a continuous-
time transfer function, as well as other discrete equivalents. For

G(s) =
1

s2
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and ∆T = 1, the following scripts
T=1;

numG=1; denG=[1 0 0];

G = tf(numG,denG);

Gd = c2d(G,T);

produces the correct ZOH equivalent. As an exercise, you should derive the
analytic formula and verify the MATLAB result.

Exercise 8. Find the zero order hold equivalent of G (s) = e−Ls, 2∆T < L <

3∆T , where ∆T is the sampling time.
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Big picture
why are we learning this:

I the majority of controllers are implemented in discrete-time
domain

I implementation media: digital signal processor,
field-programmable gate array (FPGA), etc

I either: controller is designed in continuous-time domain and
implemented digitally

I or: controller is designed directly in discrete-time domain
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Frequency response of LTI SISO digital systems
a sin(ωTsk) // G (z) // b sin(ωTsk+φ) at steady state

I sampling time: Ts
I φ

(
ejωTs

)
: phase difference between the output and the input

I M
(
ejωTs

)
= b/a: magnitude difference

continuous-time frequency response:

G (jω) = G (s)|s=jω = |G (jω)|ej∠G(jω)

discrete-time frequency response:

G
(

ejωTs
)
= G (z)|z=ejωTs =

∣∣∣G
(

ejωTs
)∣∣∣ej∠G(ejωTs )

= M
(

ejωTs
)

ejφ(ejωTs )
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Sampling and aliasing
sampling maps the continuous-time frequency

− π
Ts

< ω <
π
Ts

onto the unit circle

Real

Imaginary

π/Ts

−π/Ts

s−plane

Real

Imaginary
z−plane

−1 1

Sampling
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Sampling and aliasing
sampling also maps the continuous-time frequencies π

Ts
< ω < 3 π

Ts
,

3 π
Ts

< ω < 5 π
Ts
, etc, onto the unit circle

Real

Imaginary

π/Ts

3π/Ts

−π/Ts

s−plane

Real

Imaginary

z−plane

−1 1

Sampling
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Shannon’s Sampling Theorem
sufficient samples must be collected (i.e., fast enough sampling
frequency) to recover the frequency of a continuous-time sinusoidal
signal (with frequency ω in rad/sec)

Figure: Sampling example (source: Wikipedia.org)

I the sampling frequency = 2π
Ts

I Shannon’s sampling theorem: the Nyquist frequency (, π
Ts
)

must satisfy
− π

Ts
< ω <

π
Ts
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Sampling and aliasing
Example (Sampling and Aliasing)
Ts=1/60 sec (Nyquist frequency 30 Hz).
a continuous-time 10-Hz signal [10 Hz↔ 2π×10 rad/sec ∈(−π/Ts ,π/Ts)]

y1 (t) = sin(2π×10t)

is sampled to
y1 (k) = sin

(
2π× 10

60k
)
= sin

(
2π× 1

6k
)

a 70-Hz signal [2π×70 rad/sec ∈(π/Ts ,3π/Ts)]
y2 (t) = sin(2π×70t)

is sampled to
y2 (k) = sin

(
2π× 70

60k
)
= sin

(
2π× 1

6k
)
≡ y1 (k)!
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Anti-aliasing

need to avoid the negative influence of aliasing beyond the Nyquist
frequencies

I sample faster: make π/Ts large; the sampling frequency should
be high enough for good control design

I anti-aliasing: perform a low-pass filter to filter out the signals
|ω|> π/Ts
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Approximation of continuous-time controllers
bilinear transform
formula:

s = 2
Ts

z−1
z +1 z =

1+ Ts
2 s

1− Ts
2 s

(1)

intuition:

z = esTs =
esTs/2

e−sTs/2
1st-order Taylor Expansion≈ 1+ Ts

2 s
1− Ts

2 s

implementation: start with G (s), obtain the discrete implementation

Gd (z) = G (s)|s= 2
Ts

z−1
z+1

(2)

Exercise: Show that bilinear transformation maps the closed left half
s-plane to the closed unit ball in z-plane
Stability reservation: G (s) stable ⇐⇒ Gd (z) stable
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Approximation of continuous-time controllers
history

Bilinear transform is also known as Tustin transform.
Arnold Tustin (16 July 1899 – 9 January 1994):

I British engineer, Professor at University of Birmingham and at
Imperial College London

I served in the Royal Engineers in World War I
I worked a lot on electrical machines
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*Approximation of continuous-time controllers
frequency mismatch in bilinear transform

2
Ts

z−1
z +1

∣∣∣∣
z=ejωTs

=
2

Ts

ejωTS/2
(

ejωTS/2− e−jωTS/2
)

ejωTS/2 (ejωTS/2 + e−jωTS/2) = j

ωv︷ ︸︸ ︷
2

Ts
tan
(

ωTs
2

)

G (s)|s=jω is the true frequency response at ω ; yet bilinear
implementation gives,

Gd
(

ejωTs
)
= G (s)|s=jωv 6= G (s)|s=jω

ωv

ω

0

π/T Tangent line at ω = ωv = 0

45◦
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*Approximation of continuous-time controllers
bilinear transform with prewarping
goal: extend bilinear transformation such that

Gd (z)|z=ejωTs = G (s)|s=jω

at a particular frequency ωp
solution:

s = p z−1
z +1 , z =

1+ 1
p s

1− 1
p s

, p =
ωp

tan
(

ωpTs
2

)

which gives Gd (z) = G (s)|s= ωp
tan(ωpT

2 )

z−1
z+1

and
ωp

tan
(

ωpTs
2

) z−1
z +1

∣∣∣∣∣∣
z=ejωpTs

= j ωp

������tan
(

ωpTs
2

)
�������
tan
(

ωpTs
2

)
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*Approximation of continuous-time controllers
bilinear transform with prewarping

choosing a prewarping frequency ωp:
I must be below the Nyquist frequency:

0< ωp <
π
Ts

I standard bilinear transform corresponds to the case where ωp = 0
I the best choice of ωp depends on the important features in

control design
example choices of ωp:

I at the cross-over frequency (which helps preserve phase margin)
I at the frequency of a critical notch for compensating system

resonances
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